National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Thermodynamic 1-D model of the turbocharger of an internal combustion engine
Mrázková, Kristýna ; Böhm, Michael (referee) ; Štětina, Josef (advisor)
The thesis deals with 1D heat transfer simulation of turbine housing laying emphasis on temperature of exhaust gas leaving the turbine. The thesis covers construction and thermodynamics of turbochargers, SCR catalysts and 1D simulation software. Then the thesis focuses on exploring turbine housing 3D model discretization, building physical turbocharger model for 1D simulation of heat transfer through turbine housing with time dependent input values and predicting temperature of exhaust gas flowing through turbine outlet in compliance with NEDC cycle. Result analysis and a suggestion of subsequent actions follow.
Thermodynamic 1-D model of the turbocharger of an internal combustion engine
Mrázková, Kristýna ; Böhm, Michael (referee) ; Štětina, Josef (advisor)
Master thesis deals with 1D heat transfer simulation of turbine housing laying emphasis on temperature of exhaust gas leaving the turbine. The thesis covers construction and thermodynamics of turbochargers, exhaust gas aftertreatment and heat transfer simulation software. Then the thesis focuses on exploring turbine housing 3D model discretization, building physical turbocharger model for 1D simulation of exhaust gas output temperature and heat transfer through turbine housing. Heat transfer coefficients were calibrated for transient simulation predicting temperature of output exhaust gas in compliance with NEDC cycle. Results analysis and optimization follow, a suggestion on model integration into the virtual turbocharger system is also included.
Thermodynamic 1-D model of the turbocharger of an internal combustion engine
Mrázková, Kristýna ; Böhm, Michael (referee) ; Štětina, Josef (advisor)
The thesis deals with 1D heat transfer simulation of turbine housing laying emphasis on temperature of exhaust gas leaving the turbine. The thesis covers construction and thermodynamics of turbochargers, SCR catalysts and 1D simulation software. Then the thesis focuses on exploring turbine housing 3D model discretization, building physical turbocharger model for 1D simulation of heat transfer through turbine housing with time dependent input values and predicting temperature of exhaust gas flowing through turbine outlet in compliance with NEDC cycle. Result analysis and a suggestion of subsequent actions follow.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.